Invariants of Solvable Lie Algebras with Triangular Nilradicals and Diagonal Nilindependent Elements

نویسندگان

  • Vyacheslav Boyko
  • Jiri Patera
  • Roman Popovych
چکیده

The invariants of solvable Lie algebras with nilradicals isomorphic to the algebra of strongly upper triangular matrices and diagonal nilindependent elements are studied exhaustively. Bases of the invariant sets of all such algebras are constructed by an original purely algebraic algorithm based on Cartan’s method of moving frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants of Triangular Lie Algebras with One Nilindependent Diagonal Element

The invariants of solvable triangular Lie algebras with one nilindependent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartan’s method of moving frames. The conjecture of Tremblay and Winternitz [J.Phys. A: Math. Gen., 2001, V.34, 9085] on the number and form of elements in the bases i...

متن کامل

Invariants of the nilpotent and solvable triangular Lie algebras

Invariants of the coadjoint representation of two classes of Lie algebras are calculated. The first class consists of the nilpotent Lie algebras T (M), isomorphic to the algebras of upper triangular M × M matrices. The Lie algebra T (M) is shown to have [M/2] functionally independent invariants. They can all be chosen to be polynomials and they are presented explicitly. The second class consist...

متن کامل

On the invariants of some solvable rigid Lie algebras

We determine fundamental systems of invariants for complex solvable rigid Lie algebras having nonsplit nilradicals of characteristic sequence (3, 1, .., 1), these algebras being the natural followers of solvable algebras having Heisenberg nilradicals. A special case of this allows us to obtain a criterion to determine the number of functionally independent invariants of rank one subalgebras of ...

متن کامل

Solvable Lie algebras with triangular nilradicals

All finite-dimensional indecomposable solvable Lie algebras L(n, f), having the triangular algebra T (n) as their nilradical, are constructed. The number of nonnilpotent elements f in L(n, f) satisfies 1 ≤ f ≤ n− 1 and the dimension of the Lie algebra is dim L(n, f) = f + 1 2 n(n − 1).

متن کامل

Invariants of Lie Algebras with Fixed Structure of Nilradicals

An algebraic algorithm is developed for computation of invariants (‘generalized Casimir operators’) of general Lie algebras over the real or complex number field. Its main tools are the Cartan’s method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. Unlike the first application of the algorithm in [J.Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008